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Abstract
The Klein–Gordon equation for the finite electric-dipole potential is solved
approximately by the method of matching of asymptotic solutions. Near-
continuum state energies are found analytically.

PACS numbers: 03.65.Ge, 03.65.Pm, 02.30.Hq

The two-centre Coulomb problem is a classical problem in quantum mechanics that arose at
its early stages [1–7]. It has found application in many realistic problems of atomic physics
[1], molecular physics [2] and slow heavy ion collision physics [11]. The non-relativistic two-
centre Coulomb problem admits separation of variables and can be solved exactly [7]. The
corresponding relativistic extension of this problem is a complicated mathematical problem.
Unlike the Schrödinger equation for the two-centre Coulomb potential, the variables in the
Dirac equation and Klein–Gordon equation cannot be separated in any system of coordinates.
This fact makes impossible the solution of the relativistic two-centre Coulomb problem in
closed form. Therefore various asymptotic or variational methods have to be used for the
solution of the relativistic two-centre Coulomb problem. One such asymptotic method has
been introduced by Popov and co-workers for the solution of the two-centre Dirac equation
for the Coulomb potential [8, 9]. Matching logarithmic derivatives of the asymptotic solution
of the Dirac equation they obtained an algebraic equation for finding the energy eigenvalues.

The basic idea of the asymptotic matching method is the following: firstly, by solving
the wave equation asymptotically one obtains a wave function ψ0(r) which is valid for small
distances from the centres in a region 0 < r < r1 and ψ∞(r) which is an asymptotic solution
of the wave equation in a region r2 < r < ∞. If these regions overlap with each other, i.e.

r2 < r1

one can equate logarithmic derivatives of ψ∞(r) and ψ0(r) in the region r2 < r < r1 to obtain
the spectral equation for finding energy eigenvalues.

In this paper we apply the same method to solve approximately the Klein–Gordon equation
for the finite electric-dipole potential. Besides being an interesting mathematical problem,
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the two-centre Coulomb problem for the Klein–Gordon equation has also several practical
applications in nuclear and particle physics. The motion of a meson in the field of two nuclei
or the motion of a gluon in the field of a quark–antiquark pair in hybrid mesons can be
described by the two-centre Klein–Gordon equation. The non-relativistic counterpart of this
problem, i.e. the Schrödinger equation for a finite electric-dipole potential has been treated by
many authors [7, 10, 12–15]. It is well known that there exists a critical distance rcr below
which no bound states of the electron in a finite electric-dipole field can be supported [12, 13].
This distance is known also as the Fermi–Teller radius. At this distance the electronic
eigenenergies of ns states merge with the quasimolecular continuum edge.

The potential of the finite electric dipole is given as

V = Zα

r1
− Zα

r2
(1)

where ri is the distance from the ith charge, α−1 = 137 (the system of units h̄ = me = c = 1
is used) and Z is the charge of the centres. The motion of a relativistic spinless particle in a
field of two Coulomb centres is described by the following Klein–Gordon equation:

[(E − V )2 + (� − 1)]ψ = 0 (2)

where V is given by (1). The variables in this equation cannot be separated for any system of
coordinates. It can be written as

(E2 − 2EV + V 2 + � − 1)ψ = 0. (3)

This is the Schrödinger equation with an effective potential

Veff = 2EV − V 2

and effective energy

Eeff = E2 − 1.

At large distances from the dipole one can neglect the term V 2 and write(− 1
2� + EV

)
ψ = 1

2 (E2 − 1)ψ (4)

i.e. we have the Schrödinger equation for a finite electric-dipole potential, the variables of
which can be separated in prolate spheroidal coordinates by the following substitution:

ψ = U(ξ)

(ξ 2 − 1)
1
2

V (η)

(1 − η2)
1
2

eimφ (5)

where ξ = (r1 + r2)R
−1, η = (r1 − r2)R

−1, φ = arccot (y/x) and R is the distance between
charges.

This leads to the differential equations

U ′′(ξ) +

[
−λ2 +

A

ξ 2 − 1
+

1 − m2

(ξ 2 − 1)2

]
U(ξ) = 0 (6)

V ′′(η) +

[
−λ2 +

Dη − A

1 − η2
+

1 − m2

(1 − η2)2

]
V (η) = 0 (7)

where

λ2 = −R2

4
(E2 − 1) (8)

D = 2|E|RZα,A is the constant of separation and m is the azimuthal quantum number. The
boundary conditions are given as

U(1) = 0 U(ξ)ξ �→∞ = 0 V (±1) = 0.
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Formally the last equations coincide with those for the non-relativistic electron–finite electric-
dipole system, which was treated and solved asymptotically [10]. Here we use the results of
that treatment.

The asymptotic solution of equation (6) for ξ � 1 can be written as [10]

U(ξ) ≈ (pξ)
1
2 Kiν(pξ) (9)

where Kiν is the McDonald function and ν2 = A − 1
4 . The solution of (7) for small η is also

found in [10]

V (η) ≈ [S ′(η)]−
1
2 Ai(−D

1
3 S) (10)

where Ai is the Airy function,

S(η) =
(

3

2

∫ η

0
η

1
2 (1 − η2)−

1
2 dη

) 2
3

S ′(η) = dS

dη
.

So for large λξ and small η the asymptotic solution of the given equation can be written as
(m = 0)

ϕ ∼
[

π

ν sin(hπν)

] 1
2

(pξ)
1
2 (ξ 2 − 1)−

1
2 sin

(
ν ln

2

pξ
+ arg �(1 + iν)

)
(11)

where the following asymptotic formula for the McDonald function (for x �→ 0) and the Airy
function (for η → 0) are used:

Kiν(x) ∼
[

π

ν sin(hπν)

] 1
2

(x)
1
2 sin

(
ν ln

2

x
+ arg �(1 + iν)

)
Ai(S) ∼ c1 − c2S

with c1 = 0.355, c2 = 0.259
Now we find the asymptotic behaviour of the wave function at large distances from the

dipole. In this case we consider two regions for charges of centres: Z < 137 and Z > 137.
As is shown in [8, 9] for Z < 137 the relativistic two-centre Coulomb wave function near the
centres can be written as

ϕ ∼ (ξ 2 − η2)γ−1

where

γ = (1 − Z2α2)
1
2 .

For supercritical charges, i.e. for

Z > 137

the regularization of the Coulomb potential is needed [8, 9]. In this work we choose the
following cutoff:

V (r) =
{

Zα
r

for r > b

Zαf (r)

b
for 0 < r < b

with

f (r) = 1
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i.e. the spherical distribution of the nuclear charge. Then for the asymptotics of the wave
function one can write [8]

ϕ ∼ ξ 2 − η2. (12)

Thus in the general case the small-distance asymptotics of the wave function (assuming
that R � 1) can be written as

ϕ1 ∼ (ξ 2 − η2)β

where β is defined as

β =
{
ν − 1 for Z < 137
1 for Z > 137.

For small η we can write this as

ϕ ∼ ξ 2β. (13)

Due to the fact that |E| ∼ 1 (near-continuum states) the wave functions ψ and ψ1 overlap
with each other giving us an algebraic equation for finding the energy

1

2
+ ν cot

[
ν ln

2

λ
+ arg �(1 + iν)

]
= −2β

here we took into account the relation ln 2
pξ

≈ ln 2
p

. This gives us the following equation:

λ = exp

[
1

ν
arg �(1 + iν) − 1

ν
arccot

[
−1 + 4β

2ν

]
− ln 2

]
. (14)

To find E(R) from this we should express ν via E(R) using the following relation [10]:

ν =
[

8π2

�4
(

1
4

) (D − Dcr) − R2

6
(E2 − 1)

] 1
2

(15)

where [10]

Dcr = �4
(

1
4

)
32π

(
1 − 2

3π

)
is the critical dipole moment at which E(R) reaches the boundary of the continuum. Inserting
equation (14) into equation (8) and expressing E from the obtained equation we get

E± ≈ ±
[

1 − 2

R2
exp(ω(ν, Z))

]
(16)

where

ω(ν,Z) = 2

ν
arg �(1 + iν) − 2

ν
arccot

[
−1 + 4β

2ν

]
− 2 ln 2. (17)

For Z < 137 we have a transcendental equation for E(R)

E± ≈ ±1 ∓ 2

R2
exp

[
2

ν
arg�(1 + iν) − 2

ν
arccot

3 − 4γ

2ν
− 2 ln 2

]
(18)

where ν is given by equation (15). This equation can be solved by iteration only for
Z < 137

√
7/4 (because the iteration procedure converges only for 3 − 4γ < 0). The

first iteration gives

E± ≈ ±1 ∓ 2

R2
exp

[
− �2

(
1
4

)
π(4ZαR − 2Dcr)

1
2

arccot
�2

(
1
4

)
(3 − 4γ )

4π(4ZαR − 2Dcr)
1
2

]
. (19)
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It is easy to see that this formula has the correct non-relativistic limit which can be
obtained by assuming γ → 1 and

arccot

(
�2

(
1
4

)
(3 − 4γ )

4π(4ZαR − 2Dcr)
1
2

)
→ π

that follows from the fact that for the near-continuum state 4ZαR − 2Dcr → 0. Subtracting
the rest energy (which is equal to 1 in these units) from the expression obtained in this way
we have

E± ≈ ∓ 2

R2
exp

[
− �2

(
1
4

)
(4ZαR − 2Dcr)

1
2

]
. (20)

This is the formula for the non-relativistic electron-finite electric-dipole system which was
obtained in [10].

For Z > 137 we have the spectral equation

E± ≈ ±1 ∓ 2

R2
exp

[
2

ν
arg �(1 + iν) − 2

ν
arccot

5

2ν
− 2 ln 2 − 2π

ν

]
. (21)

The approximate solution of this equation gives the near-continuum state energy term for the
supercritical case:

E± ≈ ±1 ∓ 2

R2
exp

[
− �2

(
1
4

)
π(4ZαR − 2Dcr)

1
2

(
arccot

5�2
(

1
4

)
4π(4ZαR − 2Dcr)

1
2

− π

)]
. (22)

Thus we have solved approximately and analytically the Klein–Gordon equation for the
finite-electric dipole potential. The solution is obtained for both undercritical (Z < 137) as
well as supercritical (Z > 137) cases. The solution obtained is valid for near-continuum states,
i.e. for energies with absolute values close to 1. The above results could be useful for various
problems of few-body systems physics coming from atomic, molecular, nuclear and particle
physics.
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